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Abstract

The aerodynamic drag is very important to the per-
formance of an aircraft. The present work is to find
out if and how the classical transonic equivalence
rule can be used in zero-lift drag~rise calculations
of configurations with moderate spanwise extensions.
Some preliminary calculations of drag-rise due to
lift have also been considered. The calculations
were aimed at qualitative rather than quantitative
answers. A number of applications are shown for real
aircrafts and wind tunnel models. Results are compa-
red with performance data and tunnel tests. The wave
drag is computed by numerically solving the non-lin-
ear small perturbation equation about an equivalent
axisymmetric body.

1. INTRODUCTION
Aerodynamic drag is one of the most important quan-
tities to get hold of in the early phase of a new
aircraft project. It is also one of the most diffi-
cult parameters to predict especially in the tran-
sonic flight regime. Drag has an immediate impact
on speed, range and fuel consumption. Simple and in-
expensive computational tools are therefore of great
engineering value. An example of such a theoretical
tool is the classical transonic area rule with spe-
cial reference to the wave drag.

The basis of the area rule with zero lift was experi-
mentally laid by whitcomb (1) and theoretically by
Oswatitsch and Keune (2). In recent years this clas-
sical rule has been extended to lifting configura-
tions by Cheng and Hafez(3) and Barnwell (4),

The transonic flight envelope has gained a renewed
interest during the last years, which is reflected
in the almost explosive development of new numerical
techniques for calculating various transonic flow
problems., Today there exists a whole scale of meth-
ods (5) with different degrees of sophistication. At
the upper end we have computer programs for solving
wing-body problems(6)“(7). However, in most cases
the body is still rather crudely modelled and to im-
prove on this is usually costly due to the compli-
cated geometry involved. The complex geometry re=
quires perhaps many hundreds of thousands of grid
points in the computational domain to get a good
resolution with a finite difference method. In the
light of this, simple equivalence rules dealing with
equivalent bodies of revolution still play an impor-
tant role in the preliminary design stage where all
the close details of an aircraft are not known or
even considered.

The present paper is a more or less complete summary
of the work that has been conducted at SAAB-SCANIA
to find out if and how the classical transonic equi-
valence can be used in zero-lift drag-rise calcula-
tions. The considered configurations mostly have a
moderate spanwise extension typical to fighter-type

aircrafts., Some preliminary calculations of drag~-
rise due to lift have also been performed. The aim
was set to qualitative rather than guantitative an-
swers, though surprisingly many cases show the lat-
ter. A number of applications are given for real
aircrafts and wind tunnel models. Results are com-
pared with performance data and tunnel tests. The
wave drag is numerically computed by solving the
non linear small perturbation equation about equi-
valent axisymmetric bodies. The finite difference
method used is that developed by Berndt-Sedin-Karls-
son (8-10) | subsonic freestream Mach numbers includ-
ing unity are being considered. .

The presented results have been collected sporadi-
cally during the last five years. It is felt, how-
ever, that the findings still have news value to a
broader public and that impulses might be given to
fresh research within this area. The numerical re-
sults are related rather straight forward and no
deeper attempt is here made to do any theoretical
analyses of the consequencies. This will be left to
a possible follow on of this paper.

2. BASIC EQUATIONS

2.1 Conservation laws

For steady non-viscous flow the basic physical laws
may be compiled in the following equations
(D]

. Mass flux : div(fV) = 0

< Momentum flux: DIV(?W +pI) =0 (2)

. Energy flux : div(@¥(¥2 + h)) =0 (3)
The symbol ¢ denotes the density, p the pressure
and V is the velocity. The enthalpy h is given by

the relations
(4)

where ¥ is the specific heat-ratio cp/gv, a is the
speed of sound and T the temperature. I is the iden-
tity tensor and ¥V is the dyadic product of the ve-
locities. Thus equations (1)~ (3) relate the diver-
gence of vector and tensor fluxes,

The benefits of writing the laws in the form of sys-
tem (1)-(3) are that relations across discontinuity
surfaces are implicitly included and can readily be
obtained through flux considerations over surfaces
of closed control volumes. This lead for instance to
the Rankine~Hugoniot relations and the shock polar
expression in the case of a shock wave and to a con-
tinuous pressure across a vortex sheet. The appro-
priate field solution of system (1)=(3) is selected
through the kinematic tangency flow condition along
the concrete surface of the flying object leading to

(5)
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The unit vector fig is perpendicular to the body or
the wing surfaces. At upstream and midstream in-
finity the flow is undisturbed.

2.2 Body forces

The resultant body force F exerted of the fluid,
which starts with a uniform freestream V_ at up-
Stream infinity, can now be obtained appf&ing Gauss'
glux theorem to a control volume enclosing the fly~ .
ing body and the appearing discontinuity surfaces.

Fig 1.

CONTROL VOLUME

Using equations (1), (2) and condition (5) with no-
tations of Fig 1 will give the force F.

§=—#( (p-py )h + g(\‘r-vw ) (V+n) )as (6)

S=S1+52+S3
Here, n is the out-leading normal vector to the sur-

face S of the considered control volume. The shock
and the vortex sheet do not contribute explicitly

This is an estimation of the power we have to spend
to drag the body at a speed of V_  through the fluid
at rest. In order to split the drag in parts of wave
and lift-dependent drag it is necessary to apply the
second law of thermodynamics, which defines the ent-
ropy s. Now, by using the energy flux conservation
eq (3) in combination with eq (1) and upon adding
'PqD)

balance of energy fluxes will result

56( PP
2 (th-h_ -

@
For a flow which differs
a uniform freestream the
mics may be approximated

and subtracting a term ( V-A) the following

=P
2 @, = -
) yev-n ds=0 (11)
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only slightly from that of
second law of thermodyna-
with the difference form

_ P-Pw
A

TGD (S-'Sc‘> )= h-hcm (12)
where s is the entropy and T the freestream tempe-
rature. If eq (11) is added @b eq (10) and use is
made of relation (12) the approximate drag integral
comes out to be

D T $ Vefiag V-V ¢ @ V.
.. - + P (X - i
—_— (s S ) 1
Ve V2 @' @V W Ve $o'e
d s
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v-v
PP -
+ — ). H)dS
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The first integral constitutes the entropy flux out
of the control surface S and this is equal to the
total production of entropy across all shockwaves
/Sg, within the considered volume. Thus we finally
end up with the drag formula of oswatitsch (11,

to relation (6) if there are no sources of mass, mo- T v“ﬁ V-V 2 Fonr
. ’ s ap P Ven
mentum or energy in the field. The jump conditions D 3" _;) (sl £ v 95s + (5?}7"ﬂffl'v—“
over the shock (s) are then given by S’@V V@ 9@ @ @ ?GD @
- ’ s
(@(Vehg)]lg = 0 (7)
o5 PPy, V'V, oo
[QV(Veng) + phg), =0 (8) + —— ) - n)as {13)
A ?m)vz Vq)
®

502 + n)g =0 9).

Here n_ denotes the unit vector normal to the shock
and fAg is defined positive in the direction of flow
on both sides of the shock wave. The brackets, { ]s'
indicate the differences between the states in front
of and behind the shock. The condition across the
wing vortex sheet, which also is a stream surface,
will be that of a continuous pressure leading to -

[ply = 0

The drag, D, is found by the projection of F onto
the freestream direction x.

2.3 The structure of drag in a slightly perturbed
flow

Taking the scalar product of eq (6) by the freestream
velocity Vm), we arrive at the following relation

Mo =-dp (p-py, ) (B-V_ 1+ Q((U-T_)-¥_) ¥-A))as (10)

S
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Here is % Vé) egual to the dynamic freestreampres-
sure, The gﬁrst integral can be estimated for weak
shock waves, [s] <<cy, by expanding the gasdynamic

relation
(s-sqp) -y
e &V = =By . pEL.
P

) ) (14)

in perturbation velocities u, v, w on each side of
the shock. Cylindrical coordinates (x,r,€) and a
cylindrical control volume are assumed according to

Fig 1. The velocity vector V is equal to

(15)

A A
V= v@ ((1+u)§ + VL + wd)
The shock jump relations egg (7)~(9) in combination
with egs (14) and (15) will thus give the result
for small disturbances so that
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To estimate the last integral of eq (13) is more
intricate, especially as the far downstream sur-
face S3 is passed through by an entropy wake com-
ing from the shocks. However we will here assume
{to some extent) that crossflow velocities dominate
over axial perturbations. We will then proceed with
our somewhat heuristic approach by saying that a
fairly good approximation of the pressure is found
in the following form of Bernoulli's equation

" Ve @+ 5P

If the upstream- and downstream surfaces $q and S3
are placed sufficiently far away from the flying
object and the approximations (16) and (17) are put
into the drag integral (13), the following basic’
structure of the drag will come out for slightly
perturbed flows

D 1
o vz ( ﬂ’) ! #[u] as, #uvds +
SV

S

PPy, & (a7

2, 2 ..
-+ k (vo4+w )dS3 o (18)

S5

The symbol M deonotes the free stream Mach number.
If the contrdl volume is allowed to increase without
limit the integral over the surface 8, will go to
zero and the drag will then be

v D (+% 1 3
lim 7= - '———-—#[u]’ds +
52,53 Sove 12 42 s 3
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(19)

The first integral is termed the wave drag while the
second includes the classical induced liftdependent

drag, due to the trailing vortex sheet behind awing .

It should be noticed that the small disturbance as-
sumption will be violated if supersonic to subsonic

shocks are assumed to exist at freestream Mach numbers
too far below unity. In this case the necessary velo-

city perturbations would be too large to locally
reach sonic or supersonic conditions. Thus we may
expect the wave drag estimation to be valid only in
transonic small perturbation flow.

2.4 An isentropic model of drag in transonic flow

In this section we will look at the possibilities of
calculating the drag by simply assuming an irrota-
tional velocity field V and then expanding the isen-
tropic pressure and density relations in terms of

the perturbation velocity components u,v,w. These ex-

pansions will be introduced into the mass, and mo-
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mentum conservation laws of egs (1) and (2), after
having reformulated them into surface integrals.

The assumption of an irrotational flow can be ex-

pressed in cyllndrlcal coordlnates (x,£,9) withunit
orthogonal vectors x, z, 9 according to
W=v_ 2
curlVv = . (r((rw)r ve) b4
+ ¢ )T+ )8) % 0 20
r uo wx Vx ur (20)

The velocity V is defined in eg (15). The isentrop-
ic relations of p and ¢ are found in terms of the
velocity by integrating the energy-equation (3) a-
long streamlines and combining this with the rela-
tions of egs (4) and (14), while assuming the en-
tropy to be a constant, S=S . After having done
all this, we will come out with the following ex-
pansions up to the order of triple products in the
perturbation velocities u,v,w

P . 2 _ ¥ 2 _ 2.2
1 XB&D u-3 F&D B F&D Yu

pa)
% M 2 (v2+w2)f’5(M® 4 (1-% (Z—X)Mm 2)03
+ M 4y W) v .. (21)
% = 1-u 20 - Za-2-pm 2
- 2Py -tm 1——(3-2X)M y o’
+ %(2-0M faw?e?) + .on (22)

The important mass flux density §>V comes out to
have the following vector components in the x, T and
8 directions

£V-4_
So Vo
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To perform the necessary ordering of the different
terms we will concentrate on the massflow conserva=
tion, eq (1), and the irrotationality of V expressed
in eq (20). To this end we need the scaling quanti-
ties 1, 1, and € so that

X ~1 ~
' 1c

(£<<1)

where 1 is a characteristic length of the body and
1. is a characteristic length of the cross-flow in-
teraction. The small parameter & is a characteristic
measure of the streamline inclinations usually coup-
led in some way to the linearized boundary condition
of eq (5).

V,Wwe £

Physically we know that the mass flux density |9V[
has a fairly flat maximum at the local Mach number
M=1. If the freestream then is transonic, M ~ 1,
there will be a very strong and nearly incompressible
lateral interaction from the stream tube area changes
enforced by the presence of the body. This is also
obvious from eq (23). However, at large lateral dis-
tances from the flying object the axial interaction,
involving the velocity u, has to be retained to bal-
ance the lateral influence from v and w, otherwise
infinite pressure would result at the body. This
indicates that 1, should be fairly large and in-
crease as £ —>»0, M ~—= 1, if a uniform and globally
correct behaviour is sought.

When the scaling quantities are introduced into the
cross-flow part of curlV= o0, eq (20) it follows that
u ~ €l./1. To properly order the mass flux density
eg (23) we have to keep at least both the u~ and
u“~term of the x-component. This is necessary in
order to get a maximum flux when the approximate
local Mach number reaches one. Thus letting the di-
vergence operator, div (), operate'on (23) with the
assumed scalings, the following first order struc-
ture will appear

2 2 e 2
1-M - (2= —_—
(-M (B-@2-0M %) = &€~

2, ic £
) 12 E"’Mm =
: 1 (]

For our purpose it is here sufficient to recognize
that we may choose

1 -1/3
c
' ~ £ o,

2/3
(-4 5y € (24)

Thus on an outer scale
we may sum up the order of the veloci-

in the limit £ —0, M —> 1,
lC ~1- 8_1/31
ties to be

~ 1w 2yug 2/3
un (1M “pwE

P VRE L W E (25)

Now we have the tools to estimate the drag in an
"isentropic model" of flow.

Through the irrotationality assumption we may define
a perturbation velocity potential ¢ so that

v

A
v, (+grad $

1
¢x'v=¢r’w=?¢e

By introducing these definitions into the mass flow
density, eq (23), and then inserting this into the
mass conservation eg (1), it is possible to calcu-
late the velocity field. Jump conditions across dis=-
continuity surface are then also allowed for in the

u = (26)

velocities according to eq (7). From the irrotation-
ality assumption we immediately have that the in-
plane velocities are conserved across discontinuity
surfaces (shocks), a fact which also follows from
the "true" momentum condition eq (8). Then it is
rather obvious that the vector product V x ng is
conserved also, where Ng is the normal to the shock.
After some manipulations hg follows so that

(w}?
[u)2

IVI
[u}®

vl &
[u)

[vla

~k
- = ) A
nig 1.+ 2+ ) (x + [u]r + Q) (27)

From (26) and (25) it turns out that nS::x to order
0(el/3).

The attention will now be focused onto the momentum
equation (2) in order to formulate a drag integral.
The in-plane part of the momentum condition (8) a-
cross a shock is already fulfilled. However, the
normal condition is not satisfied in an isentropic
flow model. Thus, in order to formulate an equiva-
lent to the force integral, eg (6), we have to in-
clude all shocks in the surface of the control vol-
ume to account for the "miss-match" in momentum. If
this is done together with p and ¢ from egs (21)-
(22) and relation (23) is inserted in condition (7)
the follow1ng first order result will appear (of
order ¢ /3)

D
5 = ‘-‘#Jvds2 + kﬁw (v2+w2)-(1-M®2)u2
Sy S'3

2 2 3
+3 (K+1)M® u’)das; -
- X#l 2 3
T2 Mo P MUl a8, (28)

Sg

It should here be noticed that M2 =1 has been put
at some places in the coefficients. The scaling laws
(24)-(25) have besn used/throughout and the drag is
of order D~ ¢ V 8 . The drag of (28) is
compatible w1tﬁ>tg2 pressure given in eqg (21) to the
appropriate order so the same drag would have been
obtained if the pressure had been summed up over the
surface of the body. Equation (28) is essentially
the same as that found by Murman-and Cole(12) with
a slightly different approach.

It is here interesting to note that the structure

of the drag according to eq (28) is strikingly sim-
ilar to that of eq (18) and that the limiting value
of (28) as the control volume increases without lim-
it (83,83 — ® ) includes the same basic terms as
that of eq (19). This is true under the conditions
that M ~ 1 + 0(52/3). For Mach numbers departing
too far from unity the integrals containing the
shock jumps, [u]g, will however differ quite rapid-
ly, which is a symptom on the break down of thesmall
perturbation theory. The "miss-match" in the momentum
condition across the "isentropic" shock makes up the
drag due to the entropy jump across a weak shock.

2.5 Isentropic mass flux and the potential equation

Using the scaling laws of relations (24) and (25)
the mass conservation law eq (1) may be formulated
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on integral form as

ﬁvﬂ quu)ds2 + ﬁ (1 MCD Ju

52 53

-5 M2 @’ - x Mi (v2au?) (29)

. 2 ¥ ; o .
XM (5 (¥ -1)-1)u")dS,=(S{-5,)

where (S51-53) 20 depending on the position of Sj3.

The difference SI-S3 is equal to the cross sectional

area S, if 55 insersects with the body surface.

In this formulation, terms of order £2/3 and 54/3
have been included. Furthermore M“ =1 has been as-
sumed at some places in the interior of the coeffi-
cients. The corresponding perturbation potential
equation for ¢, which is defined in relations (26),
will thus be as follows

P 2 _ 2 2 _ 2,2, 2
—5-;((1—M®};u !5M®(1{+1)u %M@(v+w)

_ 2 X, Ly 3
!?Mm (3(.23 1)=-1)u”)

. 2 A A
+ Div ((J—Mm>u)(vr + w8)) =0 (30)

where the divergence operator Div( )} is active in
cross~flow planes x=const. In a cylindrical coordi-
nate system we have

1
¢r P W= §'¢e

Due to the conserved in plane velocities across
shocks, the condition on ¢ across a shock reads

tgbl.s =0
/3

Terms of order 84/3 and g? are included in eq (30).
It is in principle only necessary to deal with terms
of order g’ to estimate a velocity field with shock
jump relations that enables us to derive the form

of the last drag term in eq (28). However, for flows
with fairly swept shock waves it is believed that

eq (30) in full gives a more realistic behaviour.
This is confirmed in ref (13) and eq (30) essentially
agrees with that proposed by v.d. Voreen et al(13),
In ref (13), however, they have omitted the term -
(u3)X though (at least formally) this is as large

as that of - (v2+w2)x.

‘u=¢x'v=

What finally remains to be done now is to check how
good an approximation it really is to putcurlV=0.
One way to do this is to use the well known Crocco
equation, which relates curlV to grad (s). If this
is done it comes out that cuerfv[s]s behind a shock,
and thus we have that curlV ~ £6/3, This shows that
curlV=0 is a fairly good approximation.

3. TRANSONIC EQUIVALENCE RULE

3.1 General background

The equivalence rule states that sufficiently far a-
way from a slender flying object, the stream tubes
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enclosing the object are axisymmetrically displaced
and the flow seems to have been created by an equi-
valent body of revolution. The question then arises
how to predict and calculate the equivalent body.

In the classical theory(z) the equivalent body is
equal to that body which has the same cross section-
al area distribution as that of the three dimen-
sional flying object. In the near field the classi-
cal theory says that the flow differs from that of
the equivalent body by a two-dimensional incompres-
sibel crossflow which helps to fulfil the tangency
flow condition along the real body surface.

The very basic assumption behind all transonic e~
quivalence rules is that the inner field close to
the body mainly is governed by lateral interactions.
This gives rise to a two-dimensional incompressible
Laplace equation for the potential @ in crossflow
planes, x=const. The physical reason behind this is
that the massflow density is close to its maximum
value almost everywhere in the flow. Thus the flow
reacts fairly stiffly upon stream tube area changes
due to the body. The near flow can then be built up
by source, and doublet distributions around the body
cross contour. In the outer limit of the inner solu-
tion the source distribution will dominate and hence
collapse into a point source. Therefore the outer
flow will be axisymmetric and the inner boundary
condition of the outer problem will be that of a
line source, who's strength is proportional to the
axial gradient dS_ /dx of the cross sectional area

S (x). The outer axisymmetric equation contains the
delicate non-linear axial interaction typical to all
transonic flow. In essence, this is the contents of
the classical equivalence rule,

However, the classical rule is not applicable to
the extreme case of a mathematical thin wing with
lift., In this case the incompressible inner solu-
tion does not provide us with a source distribution
coming from a physical thickness. However, by mere-
ly looking at the mass flux eq (29), we may still
suspect a net streamline displacement area to be
possible through the quadratic terms -u2 and -
(v2+w?2) caused by the compressibilitycorrections to
the classical crossflow theory. Thus, the outer flow
can be controlled through these terms, and the inter-
actions may be estimated by the incompressiblecross
flow. Work along these lines have been done in ref
(3) and (4), which led to an equivalence rule in-
volving lift.

3.2 The classical equivalence rule with reference
to the drag

The classical theory is built on two distinguished
limits, one inner incompressible region and one
outer compressible region that involves the axisym-
metric non-linear flow equation. The inner region
is governed by pure lateral interactions according
to

1 1
;4rv)r + ;-w = 0

o (31)

The most commonly used outer axisymmetric equation
is given by

2

—-3—((‘1--1\'1@2 yu- 1 (32)

2 1 _
< SMy" W)+ —v) | = 0

where higher order terms of eq (30) are omitted.
Assuming irrotational flow egs (31)-(32) are equa-
tions for the potential @ through definitions (26).
The inner solution @ of eq (31) is as follows



‘f’i(r,G;X) + g (x) (33)
Here %i is the pure two-dimensional crossflow so-
lution in planes, x=const, and g(x) is an additive
function of integration, to be determined by match~
ing to the outer solution ¢O(x,r).

Now, assuming a thickness (source) dominated situa-
tion we have the following asymptotic behaviour of
y/i in the outer limit r — w .

. 5
1

This result is nothing else but an application of
the equivalence rule. The variable S (x) is the body
cross sectional area. To show (34) we have to deal
with a linearized version of the body boundary con-
dition eq (5), assuming slightly perturbed flows in-
cluding small wing and fuselage thickness slopes.
The boundary condition of the outer solution in the
inner limit (r —> 0) thus becomes

1 dS¢

ITax

(34)

Q

Se

lim (r¢o ) 2’T Ew

r—=0

The unknown function g(x) in eg (33) can now be found
according to

g(x) = lim (@,

r =0

A uniform composite-solution may be constructed by
adding the inner and outer solutions and subtracting
the common part. Hence we have the composite solu-
tion @(x,r,8) to be

ds

e
27 ’T ax inr

B(x,r,0)= 71-’ (x,83x) + @ (x,r)- (35)

An obvious deficiency in approximation (35) is that
shock waves only come in via the axisymmetric term
¢o(x r). However, for sufficiently slender configura=-
tions with zero lift the trace of the shock is sur-
prisingly close to that of the equivalent body and
in some cases this is true even in the neighbour-
hood of the bodies. To calculate the drag one can of
course use eq (35) to predict the surface pressure,
but we will instead apply an integral formulation
based on eq (28) and proceed along lines similar to
those of ref (14). The aim is to relate the drag of
a wing-body-tail combination to that of a simple
equivalent body of revolution with the same cross
sectional area, Sc(x) << 12,

The considered control volume is a circular cylinder
according to Fig 1. The surface Sq is placed so far
upstream that the disturbances have decayed to zero.
The cylindrical surface S, is placed at the outer
limit of the inner region, r=R,. The terminating
surface 83, perpendicular to X, is placed at the end
-of or behind the considered body. To evaluate the
drag from eq (28) we have to order the different
terms on an inner scale;, here given by the relations

x~1 , r~Db

v,2Ww o~ @~ /1 (36)

S
c)max

b is for instance proportional to half the wing

span and ’is an overall slenderness parameter,
related to the maximum cross sectional area(sc)max
From the irrotationality assumption, eq (20), Wwe

get the order of u to be u~¢b/1l. In the limiting
process, 7T —>0, we will assume that b/l~ @7, where
£ = 0. Thus, we end up with the order u ~ ¢ +E. 2
What finally remains to be done is to order (1-M_").
From outer considerations in section 2.4, eq (247,
the llmltlng transonic process is defined by

(1-M as £(7) — 0. Hence the relation

(T 1s to be found. This is most easily evaluated
by requiring the inner solution (33)~(34) to have
the same order of the radial veloc1ty v_as that of
the outer on the radial scale r~1£~1/3, Thus upon
taking the radial derivative of eq (34) and ordering
this to the outer velocity v of relation (25), we
may sum up the following results

e~ u~ P, o P
b , A @
-]Tl\- 'Z‘P , (‘2’(( 1 ’ )8 > 0) (37)

of the drag integral in
regions we have to choose
B=1. This result is also found when u is matched to
the outer solution. Upon scaling eq (28) with rela-
tions (37) and ﬁ =1 the following drag integral
comes out in the inner region.

1
- #uvdsz + 3‘# (v2+w?)ds3
s s

The integral over the shocks can obviously be neg-
lected on an inner scale accordlng to this analysis,
The drag is of order D~ @ v2 L . which agreeswith
the outer formulation. The first integral can be
estimated by first inserting eq (34) into solution
(33) and making use of definition (26). The second
integral of eq (38) is further found by expanding
the expression Div ( \/;Grad \W;) and applyingGreen's
theorem. The function %& is the 1ncompres51ble har-
monic solution of eqg (31) so that v2+w (Grad‘f )2
The operators Div( ) and Grad( ) are active in
crossflow planes x=const. The difference between
the drag D of the actual configuration and its
equivalent body of revolution having the drag D,
and the same area distribution S, (x) can thus be
evaluated as

To get compatible orders
both the inner and outer

(38)

D-D
_.__11 =

oy -3 f)(’l (Grad W;) « By ds + :
@ o

Cg (1)

1 2
+ 2‘7‘7.‘(3": (1)) 1nR(1) (39)

The line integral is performed along the cross con-
tour Cp created in the intersection between the
plane S3 and the body surface extended into any
necessary auxiliary cut. The argument (1) indicates
that 85 is placed at the downstream end of the con-
figuration and R is the radius of the equivalent
body. The outleading normal np is perpendicular to
the real and auxiliary body surface that includes
Cp.

For nonlifting configurations, which end in a con-
stant circular cylinder or a circular pointed rear
body the right hand side of eg (39) would be zero.
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In order not to be stuck with too complicated geo-
metrical interpretations these conditions will be
assumed in the following calculations.

3.3 Comments on the classical equivalence rule

All the analysis performed are based
turbations. Thus the results are not
transonic effects are encountered at freestreamMach
numbers too far below unity. Another remarkable fact
is that the right hand side of eq (39) is independent
of the freestream Mach number. Furthermore the theory
must fail when the inner field is too complicated
with pronounced three-dimensional transonic inter-
actions including e.g. oblique intersecting shock
waves. In such cases detailed local sub expansions
are needed and the simplicity of the overall first
order theory will be lost. It would then probably

be better to go directly for a complete numerical
solution.

on small per-
reliable if

Another difficulty that ought to be mentioned is

that a wing-body configuration generally has two
different streamwise length scales, one for the wing
and one for the body. To use only one surelyrestricts
the confiquration to be geometrically nicely blended
and to have a sufficiently swept wing.

The classical theory works with a lateral inner
length scale according to b~1T, where 1 is the un-
distorted streamwise scale. However, it is possible
to carry out the same type of analysis on a lateral
scale of order b~ 1l. In this case we need a new
slenderness parameter 4 with e.qg. JA»SC X/(bl) and
b/1~0(1). The practical results of the lowest order
analyses will be the same but the next higher order
compressibility corrections to the inner crossflow
equation will be quite different. The correction in
the first case with b~ 1% is shown in the right
hand side of the following relation

. aALA 29 2 AL A
D +wl) % 2 (v24w? i
iv {(vr+w8)x % MﬂD ox (vetweé) + Mao Div (u({vr+w8))
(40)
where the left hand side (l.h.s.) is 0(1).and the
right hand side (r.h.s.) is of order T2. In the se-
cond case when b~ 1 we have

2

- (¥+1)u? -

Div (vE+wd) & - % ((1-Mm2)u -xM

2

- % Ma> (v2+w2)) + M 2

o Div(u (vE+wd))

(41}

where 1l.h.s. is of order d and r.h.s. of order 52.
The connection between the outer parameter £ and d
is ev%}uated to begA«53/2 and hence we have

(=M y~d as 4 =0 with b/1~0(1).

The difference between eqgs (40)-(41) is that the lat~-
ter contains the typical transonic non linear inter-
action as a correction to the inner crossflow equa-
tion. Thus we may suspect that applications of eq
(39) will not be especially successful in calculat-
ing the drag for configurations where half the wing
span is of order b~1 and 4 is relatively large

(e.g. a thick wing).

From an engineering point of view it would be valu-

able to have a simple theory that at least gualita-
tively could give some guide lines how to distribute
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the physical cross sectional area in the spanwise
direction to get a good drag-rise behaviour. The
classical transonic area rule only deals with the
total streamwise area distribution and does not tell
how to blend the different parts together.

3.4 Transonic equivalence rule involving 1lift

The classical equivalence rule has quite recently
been extended to lifting configurations by Cheng
and Hafez (3) and Barnwell(4) Their work are based
on fairly complicated analyses by extensively using
matched asymptotic expansions. This will not be
related here. However, a few plausible comments will
be stated in relation to eg (29), where the mass
flux through the surfaces of a cylindrical control
volume (Fig 1) is considered. What we essentially
wants to see is how the net streamline displacement
area, which approximately is the integral of v over
Sy, varies with x when the surface S3(x) is moved
downstream over the wing.

To study this, assume a plane lifting wing with zero
thickness and angle of attack &« . Thus the right
hand side (r.h.s.) of eq (29) is zero because

8. (x)=89=83=0. Due to the wing circulation we have
a positive velocity u above the wing plane and the
same amount but negative below. Concerning the ve-
locity v this is negative above and positive below
the wing, while w is antisymmetric with respect to
a vertical symmetry plane through the wing center
with positive values on starboard. The magnitude of
u is proportional to the streamwise gradient of
the accumulated wing circulation, thus u~1dCp (x)/dx
where Cy, (x) is the accumulated lift coefficient at
station %x. The crossflow velocities v, w are pro-
portional to either the accumulated circulation or
the geometrical angle of attack (or the downwash).

To sort this out we have to estimate the whole inte-
gral of (v2+w2)/2 over the surface S3 at once. This
was in fact already done in connection with thedrag
integral of eq (38) and the main result was the line
integral of eg (39). Recalling that the potential

-jump across a wing is proportional to the circula-

tion and that the tangency flow condition must be
fulfilled, we may state that the kinetic crossflow
integral is proportional to~Cp(x)& . With all this
in mind eq (29) suggests the following displacement
area structure due to lift (strictly for certain
planforms only).

dcy, 2
Qﬁ;ﬂ

Sy, (x) vdszn.lzmmf (const112 +

Sy (x)
+ const,Cp, (x) & )

0dd powers of u will not contribute over S3. The
first order thickness contribution to a real physi-
cal configuration is given by the r.h.s. term 59-53
of eq (29). This term is of course equal to the
cross sectional area S, (x). The total equivalent
area Seq then comes out to be

Seq(x) = vdSz = Sc(x) + 5, (x)
S, (x)
In this we have not considered any coupling between
thickness and 1lift. Furthermore we have to consider
where to place the outer surface Sy which requires
detailed analyses.



However, the found heuristic result agrees instruc-
ture with the formula of Barnwell (4). His equiva~-
lent body of revolution has the following areadist-
ribution

- 3+1 s_dcy 2
Seq (x) 59 (x) + == BW(W 'a;‘)

2

+ % SCL(x)sinX , B.= 1n(—5-%nm—'—);
ax

42)

where Cp, (X) is the accumulated 1ift coefficient and
S is the reference area. The radius Rpsx is the
maximum equivalent radius corresponding to Sg

and b is the wing semispan. The length scale 1 is
not unique but it is here assumed to be the stream~’
wise extension of the main lifting region. The
theory assumes b/1~0(1) and ¢ <<1. The scale factor
B is as suggested by Barnwell in ref (15).

Apart from the reference area S, the last term of
eq (42) is equal to the classical induced drag coef-
ficient of slender wings and bodies. However, in
ref (3) Cheng and Hafez found that apart from S,
the last term should be equal to half the induced
drag coefficient at a far downstream position. Un-
fortunately this contradiction was discovered too
late by the present author so all numerical calcu-
lations were performed using eq (42) with no furth=~
er investigation concerning the last term.

The far downstream result of Cheng and Hafez in

the Treffz plane is in principle deductive from eq
(29) with the vortex drag component of eq (19).
However the last term of eq (42) may still agree
with this result if we only assume the wing to have
no leading edge suction. In that case the induced
vortex drag coefficient is simply the projection of
the wing normal force coefficient onto the free-
stream direction.

What makes eq (42) so attractive is the simple form,
which enables fairly inexpensive numerical calcula-
tions to qualitatively estimate the influence by
lift.

4. COMPUTATIONAL MODELS

4.1 Transonic zero lift drag-rise

The wave drag is assumed to be equal to that of the
equivalent body of revolution with area S (x). Thus
the right hand side of eq (39) will be set to zero,
This is strictly true for certain configurations
only as was pointed out in section 3,2. However,
obscure results with a constant rest drag would
otherwise be possible for freestream Mach numbers
close to or below the critical. We may also argue
that boundary layer effects together with the out-
going jet will form a fairly constant or slowly
varying section locally at the end of the configu-
ration. The geometrical interpretation of the cross
sectional area is as shown in Fig 2.

The equivalent area starts with a constant stream
tube, corresponding to the ingestion of air by the
intakes and ends in a constant cylinder simulating
the jet from the engine.
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Fig 3. DRAG CHARACTERISTICS

The drag of the eguivalent body was in this paper
calculated by numerically solving eq (32) with the
finite difference method of Berndt-Sedin-Karlsson
(8-10), The number of mesh points covering the
length of the body usually was about 25. In some
cases a certain smoothing had to be applied to the
cross sectional area S (x). The outer boundary of
the computational domain was placed at a radius of
6~8 body lengths and a far field was assigned at
this boundary. The radial spacing was chosen to be
logarithmic and about 60 points were used. The whole
x~axis was mapped onto a finite interval and about
40 points were spent on this. The pressure was ap-
proximated according to eq (17), The drag coeffi~-
cient Cp was defined by the integral

s = 7 f Cpd (B)
Body ¢

pP-pP
Cp = o 3 = -2u--v2
50 v ’ .

6@ . @




where 8 is the reference area and R is the radius
of the .equivalent body. Special care had to be
taken when numerically integrating the pressure
coefficient Cy at the start and at the end of the
body due to the singular behaviour there.

Typical drag-rise characteristics versus Mach number
are shown in Fig 3, where Mop denotes the critical
freestream Mach number and Mp is the drag diver-
gence Mach number for which 5CDﬁ9M =0,1 {ref area=
wing area). ®

4.2 Transonic drag~rise due to lift

Preliminary studies to investigate the order of
magnitudes were done using Barnwell's formula, eq
(471), as this could be done in connection with a
thesis by Lévgren(16). However, in the light of eq
(29) and the qualitative discussion of this in sec-
tion 3.4 the 1ift dependent terms in eq (41) were
weighted by a factor M 2, Thus the equivalent body
was created by adding e streamline displacement
area due to lift on top of the physical area S _(x)
defined in Fig 2. It is here interesting to nofe
that far downstream the eguivalent body will always
end in a constant cylindrical part even if the
physical body is closed. The additional downstream
area is related to the classical vortex drag.

The accumulated lift coefficient Cp (x) was simply
estimated by linear three-dimensional theory. A
vortex lattice method gave Cp(x) for the wing. The
wing was geometrically continued to the fuselage
centerline. The 1lift contribution from the fuselage
was neglected. The vortex panel method was checked
to give the right incompressible crossflow solution
in the limit M_—=» 1. Without further considera-
tions the wave drag of the equivalent bodies were
calculated with and without lift according to sec-
tion 4.1. By subtraction of these results the drag-
rise due to lift was defined. The calculated drag-
rise due to 1ift was compared with wind tunnel ex-
periments where the experimental data first were
corrected by subtracting the experimental zero lift
drag and the pure subsonic vortex drag at the speci-
fied total Cp-value (drag-rise due to lift =
cD(M@)' C) - CDo(Mm>)—CDi(Mcr' CL))'

5. NUMERICAL RESULTS AND DISCUSSIONS

5.1 Zero-lift drag-rise

Fig 4 illustrates a test case for the numerical
‘procedures to calculate the drag of an axisymmetric
body. Two parabolic arc bodies are considered, one
of fineness ratio f=6 VE'(Body I) and the other
with f=6 (Body II). The calculated pressure dist=-
ribution of body I at Mach number M=0.99 is in ex~-
cellent agreement with experimental data apart from
some minor differences due to viscous effects be-
hind the shock. The viscous displacement thickness
has not yet been considered in any of the present
calculations. The calculated wave drag versus the
free-stream Mach number is also in a very good a-
greement with experimental data when the viscous
part of the pressure drag is subtracted from the
experimental points (which include viscous pressure
drag) . This agreement seems to be equally good for
both Body I and Bod¥ II. The experiments were carri-
ed out by Drov.zqge(1 ),

Figures 5-~10 show computed drag-rise curves of equi-
valent bodies to a number of aircrafts and wind
tunnel models. The calculated data are compared
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with wind tunnel experiments, flight-tests and per-
formance data. The latter are data used for per-
formance calculations and these data are assumed

to be the "best" synthesis between flight-tests

and wind tunnel experiments. Some geometrical para-
meters of the presented configurations are given

in Table 1.

. ' b, b2 b 3
Fig Type Vet ¢ ?‘;’(Tw) ) ?;] X

'

5 Wt~ 1121 .060 ,0059 .0030
- model

6 aJ37 .131  .040 .0024 .0016
6 A32 .152  .090 .0194 .0071
7 I35 .135  .050 .0023 .0018
8 F5 .103  .050 .0046 L0012
9 Hunter  .132  .085 .0099 .0041
10 J29 214 110 L0367 .0133

Table 1. CONFIGURATION PARAMETERS

The symbol ¢ denotes the relative thickness based
on the maximum cross sectional area (with the in-
take areas subtracted) and the total configuration
length 1. The notation 7" is the relative airfoil
thickness of the wing, while b is the wing semi-
span and lw the overall length of the wing in the
stream-wise direction. The last two groupings of
parameters are attempts to a rough ordering of how
axisymmetric the inner crogsflow solution is on an
outer length scale proportional to r~1/7 . They

are constructed by considering the quadrupole term
of the outer expansion of the incompressible inner
solution. The first group is connected with the
periferical variation in the axial disturbance velo-
city, while the second is related to the same varia-
tion in the radial velocity. Both quantities are
approximately normed by the symmetric source cont-
ribution.

Looking through the figures 5-10 we may generally
say that there is a gualitative agreement between

-calculated and "true" drag except for the case with

the SAAB J29 "Tunnan", which is a fairly thick and
wide aircraft. In some cases we can also claim a
rather decent guantitative description as in the
cases with the SAAB AJ37 "Viggen", the SAAB J35
"Draken" and the Northrop "F-5". However, when it
comes down to calculate the drag divergence Mach
number Mp, as defined in Fig 3, things are more
complicated and the requirements on the quantita-
tive accuracy may become fairly sharp to get a good
estimate. Figure 11 gives a picture of correlation
between the "true" Mj and the calculated Mp,,qo-
From this limited sample of cases (16 points) it
seems as if a rather good prediction can be obtain-
ed when the Mach number Mp is in the order of 0.9,
Locally in this region the prediction errors in M
lies approximately within + 0.015, For Mach numbers
below 0.9 the method is conservative and for values
above 0.9 (towards unity) M, is over-predicted.

For project work up to now the method has simply
been empirically calibrated by drawing a line
through the sample of points. The corrected method
has successfully been used in preliminary design
work at Mach numbers below 0.9. However, a non-
critical use is not recommended.

The data which the calculated results are compared



to are mostly taken from unpublished sources. How-
ever, the wind tunnel tests of Fig 6 are due to
whitcomb (') and the flight tests of Fig 9 is found
in ref (18). Concerning wind tunnel tests, it usu-
ally is so that the Reynolds' number is too low
which can inflict on the shock-boundary layer in-
teraction giving results that are different from
full scale data. The viscous effects can also be
quite different in the equivalent body case com-
pared to the three-dimensional situation. To sepa-
rate drag and thrust in real flight tests is also
rather difficult especially as most evaluation
techniques are dependent on some a priori informa-
tion about the engine.

In the present applications of the equivalence rule
we have not considered any viscous displacement
effects. The theory itself is built on small per-
turbation assumptions so if transonic flow occur

at too low free-stream Mach numbers, these assump-
tions will be violated. To examplify this, we will
approximately need an axial super velocity that is
about 62 % of the free stream to locally reach a
Mach number of M=1.02 in a flow with a free stream
Mach number of M _=(0.7. However, to locally reach
M=1.02 from M_=0.9, we only need about a 12 % in-
crease in velocity over the free stream. The very
basic assumption behind the equivalence rule is
that the stream-wise interaction can be neglected
compared to the lateral cross-flow in the neigh-
bourhood of the flying object. This incompressible
inner approximation is good for configurations with
small slenderness ratios and becomes better when
the local Mach number is fairly close to unity al-
most everywhere in the fliow near the body. The
inner cross~flow solution tends to an axisymmetric
one far away from the actual body cross-section.
However, it has to approach this sufficiently fast
in order to meet the outer axisymmetric transonic
solution on a radial scale mainly determined by the
length and the slenderness of the equivalent body.
This surely puts some restrictions on how much a
configuration can be extended in the spanwise direc-
tion in terms of wing cross-sectional area, semi-
span and wing-sweep to fall within the applicabili-
ty of the classical transonic equivalence rule.

The deviations in Fig 11 between the "true" drag
divergence Mach number and the calculated one are
certainly due to some of the mentioned restrictions
on the theory. The SAAB J29 "Tunnan" in Fig 10, for
instance, is a typical example of a configuration
which is too thick and too wide. The average (local)
Mach number in the close neighbourhood is probably
also subsonic and too far from unity {at least in
the beginning of the drag-rise phase). The same
argument can presumably also be used to explain
some of the deviations 'in drag-rise Mach numbers
for Mach numbers close to one in Fig 11. In these
cases the average (local) Mach number will probably
be on the supersonic side, thus reversing the corre-~
lation compared to the situation in Fig 11 for Mach
numbers roughly below 0.9. This behaviour may also
be explained by interpreting the stream-wise inter-
actions in terms of spatial source and sink distri-
butions in cross-flow planes. The source and sink
distributions, which make up the errors in the inner
slender~body approximation, depend on how much sub-
sonic and supersonic flow there is in the flow.

To round off this section, we may say that the ex-
periences so far seem to indicate that aircrafts
which are good for a drag-divergence Mach number
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of about 0.9 usually are enough slender and compact
to fit into the classical transonic equivalence
rule (with reference to drag as interpreted in this
paper). To get outside this narrow Mach number range
the theory needs to be improved in scope and quali-
ty. Such an improved theory would probably also be
able to give some guide-lines how to distribute the
cross~sectional area in the span-wise direction to
get a low-drag. One step in that direction was in
fact already taken by Berndt {19), who considered
the isolated Mach one case.

5.2 Drag-rise due to lift only

Preliminary calculations of the drag-rise due to
1ift only were performed by Ldvgren{18) according

to outlines given in section 4.2. Some results of
these computations are shown for two configurations
in Fig 12-13. The wing, which is the same for both
configurations, is of an advanced transonic design
that was derived at Saab-Scania. The total area
distribution at zero~lift in Fig 12 was especially
designed to have a low transonic drag and it was
constructed out of an ellipsoid that was distorted
at the rear end. The zero-lift area distribution

of the configuration in Fig 13 was found by mounting
the wing on a fuselage with a cylindrical mid-séc-
tion and a pointed ogive nose. The maximum cross-
sectional areas of the two configurations in Fig 12
and Fig 13 are the same. The additional area distri-
bution due to a lift coefficient of C;=0.3 and a
free-stream Mach number of M=0.9 is indicated in
both figures.

The calculated drag-rise contributions due to lift
only are plotted versus the free-stream Mach number
at CL=0.3 in Fig 12 and 13. The agreement between
calculations and wind tunnel experiments is surpris-
ingly good. The scattering in the experimental points
are caused by tunnel induced vibrations in the model.

Several other cases with other configurations have
been calculated with about the same quantitative
agreement as in Fig 12-13. However, before drawing
any extensive conclusions about the method, we have
to bear in mind the comments stated at the end of
section 3.4, concerning the far downstream contribu-
tion to the cross-sectional area (coming from the
vortex wake).

5.3 Perspective on the classical zero-lift compo-
site solution

To get a close view of the classieal matched asymp-
totic solution, according to eqg (35) in section3.2,
some pressure distributions of a number of configu-
rations were calculated in a thesis by Karlsson(20),
Figure 14 shows a swept wing-body combination, where
the radius of the equivalent body is proportional
to the shape function ((x/1)-(x/1)") with n=3.39.
The airfoil is a symmetric parabolic arc and the
free-stream Mach number is 0.9. The composite solu-
tion is here compared with results from a linear
three~dimensional panel method (though the critical
pressure obviously is exceeded). The inner incom-
pressible cross~flow solution of eqg (35) was :calcu-
lated by a piece-wise constant source and sink dist-
ribution along cross-contours of the congecutive
cross~sectional areas. The outer non-linear axisym-
metric problem was solved by using the method by
Berndt-Sedin-Karlsson(8-10) | 1n spite of the fact
that linear theory is not applicable in this case,
we may generally say that the agreement between the



pressures as computed with the two methods is as-
it seems as if the com-
posite solution reacts more stiffly upon the waist-
ed midpart of the fuselage. The trace of the axi-
symmetric configuration shock, which appears in the
composite solution, does not hit the wing but lies

tonishingly good. However,

slightly behind. In a "true" non-linear three~dimen-

sional solution we would have expected a shock wave

to appear somewhere at the rear part of the wing
and to be fairly strong in the tip region.

A similar calculation at Mach one of a delta wing-
body combination is shown in Fig 15. In this case

the composite solution is compared with the classic-

al method of local linearisation as applied in ref
(21) by Spreiter and Stahara. The equivalent body,

which is 10 % thick, is of the same shape as the

former configuration. The wing airfoil is a symmet-
ric parabolic arc, 4 % thick. Even in this case the
composite solution agrees very well with the method
of comparison apart from the positive pressure in-

crease behind the configuration shock, which ref

(21) does not catch. The trace of the shock wave,
coming from the axisymmetric outer solution, seems

to be in a realistic position at the end of the
wing. It is known from experiments(

tion even in the neighbourhood of the configura-

tion when this is sufficiently slender and compact.

6. CONCLUDING REMARKS

The aim of the present study was to investigate if
and how the classical equivalence rule could be used
in zero-lift drag-rise calculations of fighter-type
aircrafts. It was then found that qualitative and
in many cases also quantitative drag-rise charac-

teristics usually can be expected for configura-

tions that are slender and compact enough to have

a drag-divergence Mach number in a narrow region

around Mach 0.9. For such configurations it seems
possible to predict the drag-divergence Mach number
to within +0.015 when viscous effects are not too
pronounced. Not unexpectedly, the theory was most
confined to compact configurations of moderate span-

wise extensions such as delta wing-body combina-

tions. An empirical-statistical correction of the
theory has successfully been tried for engineering

purposes to extend the applicability of the Mach

number range. However, a non-critical use of such
a corrected method is not recommended without de-
tailed insights into the consequencies of the break
down of the theory. An improved theory (or a guali-

tative error estimate if that is possible) would

probably give qualitative guide-lines how to dist-
ribute the cross-sectional area also in the span-
wise direction to get a good drag-rise behaviour.
However, an improved method must still be economi-
cally competitive to be justified in practical early

design work.

The preliminary calculations of drag-rise due to

lift, which have been conducted so far, have shown
surprisingly good qualitative and guantitative re-
sults. Several other examples than those presented

in this paper have been computed with about the
same results. However, it is felt that the drag

model, as interpreted in this paper, has to be re-

that the shock
originating from the equivalent body of revolution
lies fairly close to the three-dimensional situa-

.

viewed once more before any far reaching conclusions

can be drawn.
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